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Abstract 
In this study two-dimensional and calm flow numerical solution on two warm Cylinders 
with constant temperature with rectangular cross-section located inside a canal with 
insulator walls have been studied. The problem for blockage ratio of 0.125, distance 
between the barriers equal to 1 to 4 times of the height of the barriers and Reynolds 
numbers in the range of 100 to 300 have been conducted. The effect of change in each of 
the parameters on Nusselt number, level of heat transfer, drag and lift coefficients and 
Coefficient of friction and the effect of distance changes between the barrier to canal wall 
on level of heat transfer and also the effect of changes in Reynolds number on these 
coefficient have been studies. The governing equations have been solved with the use of 
discretized finite volume method and the obtained Algebraic equations and for solving 
Navier-Stokes equations A semi-implicit fractional step method has been used. Values of 
drag coefficient and average Nusselt number have been calculated for four different grids 
and have been compared with each other and finally, the appropriate grid has been 
selected .Increased Reynolds number in blockage ratio of 0.125 for the 1st barrier in all the 
S/Hs leads to increased drag coefficient. However, for the 2nd barrier and in S/H=1 and 
S/H=2, drag coefficient decreases. In S/H=3 and S/H=4, considering the change of flow 
shape and the fact that the space between the two barriers are not filled with vortices, 
until the Reynolds number in which the space between the barriers are filled, drag 
coefficient decreases and then after than increases. This critical Reynolds in S/H=3 is 250 
and it is 150 in S/H=4. With increasing the distance between the barriers in blockage ratio 
of 0.125, for the 1st barrier, average Nusselt increases, however, increased Reynolds 
number has a direct effect on increasing average Nusselt in different distances of barriers. 
The highest jump in average Nusselt in different Reynolds is seen in the barrier distance 
between 3H and 4H which is due to Vortex shedding  phenomenon in heat transfer. On the 
2nd barrier also, increased distance between barriers in general leads to increased average 
Nusselt in which Reynolds number has a direct relationship with increased average 
Nusselt.  
Keywords: numerical analysis, Navier-Stokes, Reynolds, calm flow, critical Reynolds 

 
Introduction 

The flow on barriers inside a canal has attracted the attention of many researchers in different 
fields of engineering. Among these we can refer to the flow on apartment buildings. In most of 
the conducted studies only the flow on a barriers inside a canal has been studies and seldom a 
study has been conducted on two cylindrical. Identification of the physical phenomena of flow 
on these geometries in Building applications in optimized design has a special importance. 
Hence, studying flow and Heat Transfer on two barriers inside a canal has attracted the 
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attention of researchers. The major differences of the present study with that of previous ones 
are presented below:  
In the selected geometry two barriers in the center of canal with fixed temperatures  have 
been studied. This study has been conducted in the lower range of Reynolds number 
(Reynolds 100 to 300) and the effect of geometrical parameters of the problem on flow field 
and heat transfer have been studies closely.  
1-1- Numerical studies  
Young & Vafai [1] have studied forcible convective  of flow on a warm barrier with fixed flux 
which has been located on the wall of a canal at the range of a Reynolds number of 200 to 300. 
A special emphasis has been placed on calculation of local Nusselt number distribution and 
average Nusselt number. In this study changes on some barrier parameters such as Width, 
height and also The thermal conductivity of the fluid to barrier and flow rate have been 
studied. Results of this study indicate that the shape of the barrier has a great effect on 
current and heat transfer. Also, with the increase of Reynolds number, average Nusselt 
number increases. Local distribution of Nusselt numbers also has been obtained on barriers 
and indicates that Nusselt number increases in the vicinity of the inside corners of flow 
specially at the upper corner. Rosales et al. [2] in a numerical study has studied the 
specifications of Unsteady flow and heat transfer for A pair of square cylinder in a calm flow 
inside a canal. Reynolds number has been assumed to be constant and equal to 500. Drag, lift 
coefficients and heat transfer have been studied. Results indicate that when the warm barrier 
approaches the wall, drag coefficient and Nusselt number decrease. Korichi & Oufer [3] have 
studied Heat transfer displaced between a Newtonian, relaxed and incompressible fluid and 
three physical barriers located on lower wall (2 barriers) and upper wall (1 barrier) 
numerically. Walls have been considered as insulator, except for the parts on which barriers 
are located and beneath barriers constant heat flux is applied. The range of Reynolds number 
is between 400 to 2000. Effects of changes in Reynolds number, distant and size of barriers as 
well as thermal conductivity of the solid to liquid ratio have been studied. Results indicate 
that with increasing Reynolds number, heat transfer from barriers also is also increased that 
this increase in maximum at the corners of barriers. Tatsutani et al. [4] have studies flow on 
two square barriers with different heights inside a canal for Reynolds numbers between 200 to 
1600 on the basis of downstream length of the barrier. In this study they have found that the 
special formed patterns in the fluid field depends on the distance between barriers. They have 
also found that with changing the distant between the barriers, after a critical distance, two 
vortex are created with different rotation directions between the two barriers. In this case, 
fluctuations of vortices only have been seen at the downstream of the second barrier.  
1-2- Empirical studies  
Chen & Wang [5] in an empirical analysis have tested forcible convective  currents on two 
heated barriers on the wall of a canal. This experiment includes mass transfer as well. Based 
on the similarity of mass transfer and heat transfer, results can be generalized for determining 
heat transfer as well. The test has been performed for high range of Reynolds numbers. The 
highest Nusselt numbers has been seen on the initial upper corner on the same direction as of 
the current. Also, it has been seen that in Turbulent flow with increasing the distance between 
two barriers, average Nusselt number first reduces and then increases. Sewall  et al. [6] have 
studied flow and heat transfer in a canal with some barriers on walls in high range of Reynolds 
number. One of the most important aspects studied in this study is flow transfer in the area 
under development, distribution of average and turbulent quantities in developing, developed 
areas and bend area.  
2- Geometry in this study  
Two square warm barriers with constant temperature have been placed insides a canal with 
Wall insulation. In figure (1) a schematic of the problem and its important parameters have 
been shown. It should be mentioned that the Coordinates origin on the left wall of the first 
barrier is located inside the canal and the positive direction of x axis is toward downstream of 
the flow and the positive direction of y axis is toward upper wall of the canal.  
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Figure 1:  Problem's schematic figure and its important parameters 

upwind  length (Lu) is equal to 5H and downstream length (Ld) is considered as 24H≤. [7]  
S/H: distance ratio between two barriers to height of each barrier and this parameter in this 
study takes values of 1,2,3 and 4.  
B1: Refers to blockage ratio which intern refers to height ratio of each barrier to the widths of 
the canal (H/h) which is equal to 0.125 in this study.  

Reynolds number:  (Umax.H/) which is in the range of 100 to 300.  
The used grid in this problem is a Heterogeneous grid which has compaction near canal walls 
and barriers as well as at the vicinity of barrier corners and with increasing the distant from 
walls and edges, nodes become looser. Figure (2) presents the grid around the barriers.  

 
Figure 2:  Grid around barriers 

One of the analyses which is being performed in numerical problems is the selection of 
solution grid and independency of solutions from the mentioned network. This discretization 
is performed in order for us to know eventually that which grid is appropriate for the problem 
in question. The used method is in this way that first the problem is solved with a rather big 
grid and in the next stage the grid is made more small and solutions are compared with the 
previous cases and if the solutions have small difference with each other, the larger grid is 
selected as the solution network, otherwise making the grid smaller continues until a small 
difference would be observed between the two final cases of solutions. For studying the effect 
of changes of the calculated grid and its effect on solutions in the geometries of S/H=2 and 
Bl=0.5, the sensitivity of solutions to grid size is studies. The smallest size of the grid beside 
walls respectively has been selected as 0.02H, 0.015H, 0.009 H and 0.007H that the size of grid 
in them is equal to 231x67, 253x80, 267x93 and 326x125, respectively. Obtained results include 
Average Nusselt number as well as total drag coefficient which are being compared. From 
comparing the results obtained from this calculated network, (figure 3), it can be concluded 
that in Reynolds numbers between 100 to 150 the size of the grid is 0.015 and in Reynolds 
numbers of 200, 250 and 300 , the grid size of 0.009 is the proper size for the grid.  
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Figure 3: Comparison of the results obtained from calculated grid 

2-1- Temporal Convergence  
Momentum equations have been considered as transient. In fact, temporal derivatives of 
speeds have been considered in equations of motion. Sustainable problems also can be solved 
in transient condition that after some temporal solutions become convergence and final 
solution is obtained. The point which should be noted is the temporal convergence of 
solutions, which means that the solving process should be continued until we are confident 
that the software output is the very sustainable answer or solution. The temporal convergence 
is selected on the basis that changes become sustainable and show a repetitive process. In 
some of the studied geometries sustainable conditions have been observe and in another 
number of them unsustainable conditions have been seen. The averaged value have been 
selected on the basis of elimination of initial error, approximately 30 first time unit. For 
answering this problem consider figure (4). In this figure in Reynolds number of 250 in 
blockage ratio of 0.5 and S/H=2, changes of three points of the field has been drawn with time 
that the position and location of these three locations and points of the filed have been shown 
in figure (5).  

 
Figure 4:  The location of three points of a, b and c in canal 

  
Figure 5:  Convergence process of Horizontal component of velocity over time in three points 

of the field:  A) point a, B) point b, C) point c 
3- Numerical approach to  the problem  
Obtained equations from Finite volume method are analyzed and then are solved with the use 
of new code of UTF [8]. This code has been developed for three-dimensional solution of 
turbulent follow on complex geometries. In the beginning the way equations have been 
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analyzed with the use of Finite volume method is explained. This is explained with Spatial 
discretization for terms of convective , diffusion and time discretization for non-sustainable 
term and finally fractional step solution for Navier-Stokes equation and direct solution 
method and for solving linear equations resulted from discretization of the pressure equation 
(Poisson equation).  
3-1- Finite Volume Discretization 
Momentum equations in short are presented as below:  

(1)           
 




































S

xxx

U

t
jjj

j 

In which   is a function of u, v and w and 


 ,diffusion coefficient and 


S  is general source 

term. Diffusion coefficient and source term have been specified in table (1) according to the 
equation type.  

Table 1: A summary of Diffusion coefficient and source term for The governing equations 


S  

    Equation 

0 0 1 Continuity 

i
x

p

p 


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1   υ 
i

U  
Momentum 

 
The governing equations are analyzed with the use of finite volume method in which the 
solution area is located inside control volumes. The defined grid inside control volume for 
Scalar values includes pressure, temperature and so on and control volume of velocity  is 
displaced in a way that Scalar quantities are located in the center of control volume. This 
change occurs due to separation of the velocity field and pressure which prevents the creation 
of repetitive state of points. In figure (6), a displaced grid has been shown in 2-D. figure (7) 
show the three-dimensional control volume on the basis of velocity  component of U, the 
center of which is locate in I, J, K.  

 
Figure 6:  Control volume on a displaced grid for two-dimensional network:  continuous lines 

for control volume of P, dotted line for control volume of U and Non-continuous line for 
control volume of V 

With the integration of equation (1) on each control volume the following equation is 
obtained.  
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The following equation is obtained with the use of Gauss theorem:  

(3)      



dsnadv

x

a

ii

j

i 

Volume integral on F term is transferred from equation (2) to Surface integral and the 
following is obtained from it :  
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Figure 7:  Three-dimensional control volume for U(I,J,K) 

Integral on equation (4) is a real integral and for converting it to Algebraic equations we are 
required to used deferential form and some assumptions for simplifying them. The simplest 
assumption with the consideration of accuracy of 2

nd
 degree is to show volume integral with 

the multiplication product of average volume value of 


  in volume.  

 



vvdv                    (5)   

            

The averge volume value of 


  should be calculated from the integral on volume of equation 
(5). A number of assumptions can be used for obtaining this value. Among these, 
Interpolation between nodes value or using shape function for example for accuracy of 4th 
degree, shape function with 4

th
 degree can be named.  

In the present study for problem simplification, the existing values in control volume centers 
as average have been used. According to this assumption all the values on points are available 

and there is no need for interpolation. This assumption in case of   value being constant or 
in the case it changes linearly inside control volume is equal to the actual value. At the right 
side of equation (4), Diffusion and convective  terms are located which are presented as per 
the following on control volume surfaces.  

(6)         
iiiiii

sFluxsFluxdsFlux 

For calculating average surface flux in equation (6), [Flux] term, average value of 

j

j

x
U




 ,,  

on surface 
i

s  should be calculated. For determining these values again some assumption 

have been considered. In the simplest assumption, average of the above mentioned values at 
the surface center have been considered as average value of total surface. For a full 

Discretization of the equation, 


S  value (source term) also should be estimated. From table 
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(1) it is seen that only for momentum equation the value of source term is not equal to zero 

and is equal to pressure gradient of 

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i
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

1 .  

These two terms in table (2) have been shown in summary and analyzed.  
Table 2:  Summary of source term in momentum equation 
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3-2- Spatial Discretization Scheme 
Calculation of average value of source on surface in equation (6-3) includes the production of 

multiple variables and their gradients on surfaces. 
i

U  is required for convective flux and 


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
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 


i
x

T  is required for Diffusion term. These terms have been calculated with 

the use of Interpolation of speed, temperature and so on values on points.  
3-3- Evaluation of convective flux  
Discretization method for convective flux term is so much sensitive and critical in accuracy 

and sustainability of numerical solution. Values of   and 
i

U  in every plate are calculated 

with the use of one or multiple values from existing points in vicinity of interpolation and 
convective flux with the use of interpolated values.  
A common method for calculation of convective term is discretization  of this term into two 

convective value terms of    and transfer velocity   
i

U . For example, transmission 

intensity from east plate in control volume of 
P

  shown in figure (3) is expressed as below:  
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Superscript of east (east) is considered as the interpolated value in east plate.  

Transfer velocity of  
east

tran
U  has been calculated with the use of linear interpolation of 2nd 

degree in a non-uniform grid and calculation of convection level of  
east

conv
  or 

e
  depends on 

Discretization method.  
3-4- Upwind Discretization Scheme 

In this method, value of 
e

  is calculated based on upwind or downwind points on the surface 

of control volume that the selection of upwind or downwind depends on flow movement. This 
method is equivalent to discretizing 1

st
 order derivative in forward or backward states.  
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Figure 9:  Convective flux and Diffusion on east plats from control volume of P in two-
dimensional model 

With the use of Taylor expansion between 
e

  and 
E

  , 
e

  and 
P

  we have:  
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In which h.o.t is error term with a higher rank. The method of UDS has an accuracy of 1st 

order and error term is proportional to grid distance. In UDS, 
e

  is assumed as per the 

following.  
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When the error term is large, this assumption predicts diffusion term as larger and this 
problems is known as diffusion error [9].  
3-5- Linear interpolation  
This method is equivalent to central difference scheme  (CDS) which is used in finite 
differential method. This method refers to linear interpolation between two nearer points. In 
the east plate we will have the following:  
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CDS method have numerical dispersion and in case the grid points will not have a proper 
distance, it is possible that it will convert problem solution to a unsustainable numerical 
solution. Oscillatory mode will occur if the value of Peclet Number 

v

xU
P

e




 would be 

larger than 2 [9].  
3-6- Quadratic Upwind Interpolation for Convective 
QUICK model calculates values as per quadratic Upwind Interpolation for convective. This 
method uses 3 points - 2 points of upwind and a point in downwind of the control volume 
surface. QUICK relationship for east plate is written as below:  

(13)    
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In equation (12), values of 
i

g  are presented as per the following:  
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 degree accuracy and its error term is as per the following:  

              (12)
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Above equations are correct for uniform and non-uniform grids. Taylor series expansion for 

e
  on a uniform grid with the assumption of  

east

tran
U  is equal to :  
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         (15)  

That considering equation (12) and with replacement of 8/3
1
g  and 8/1

2
g , the 

method of QUICK have a 3rd order accuracy. In practice, QUICK method, quantitative value 
is much more accurate that in linear interpolation. Anyhow, in both the methods, 
convergence is reached with 2

nd
 order accuracy [10]. Error term is of diffusion material and 

therefore, has a higher sustainability comparing to linear interpolation.  
3-7- Evaluation of the Diffusion Flux  
Discretization of diffusion term is based on 2

nd
 order linear interpolation. Calculation of 

average velocity  on the surface or temperature gradient is made with the use of two points 
and each point is located on the side of the middle point.  
Gradient term is expressed as per the following:  

(16)         
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Wit considering the above assumption, error term can be written as below:  
(16)  
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This method in uniform grid has a second order accuracy. Error term  is proportional with 
grid points distance and coefficient of expansion in a non-uniform grid [9].  
3-8- Temporal Discretization Scheme  

Left side of the governing equations include non-permanent term of  t / . When 

marching method is used, temporal discretization becomes similar to a spatial Discretization 
scheme. This non-permanent term shows a specific sharing behavior and spatial terms show a 
Elliptical behavior.  
When a non-permanent term is discretized in relation with spatial fluxes, two groups of 
methods as explicit and implicit are used. Explicit methods calculate the new value of each 
point with the use of points' values in pervious temporal steps in new temporal steps directly. 
Multiple explicit methods have been developed that here in this study Runge-Kutta method 
has been used. This method is a multiple-points method. In this method, the points between 
the times t

n
 and t

n+1 
 are used and for starting there is no need of trigger. For defining this 

method, Nth order equation motioned below is evaluated :  
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n

 will be as per the following:  

(18)          










N

j

jj

nn

kw

1

1

 














 





 1

1

j

i

iji

n

j
kBtFk

 

http://www.jsstm-ump.org/


 Jurnal UMP Social Sciences and Technology Management                                                                                     Vol. 3, Issue. 2,2015 

 

        89   
 

Degree of Runge-Kutta method shows the accuracy of the method in which 
j

W  term is 






N

j

j
w

1

1 

And a constant parameter which is defined as per the following, in which the value of 
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B  
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

1

1

j

i

jij
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3-9- 1
st

 rank Runge-Kutta method (RK1)  
In 1st rank Runge-Kutta method with consideration of N=1, equations are reduced to Explicit 
Euler method with a 1st rank accuracy.  

(21)         
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3-10- 2
nd

 rank Runge-Kutta method  (RK2)  

In 2nd rank Runge-Kutta first  the conditions of 1

21
5.01


 W  and 1

22
5.0


 W   should be 

realized. Considering the fact that the number of unknowns are more than the number of 
equations (three unknowns and two equations) hence, the problem has more than one 
solution.  
For example,  
Developed Euler method    1,2/1,2/1
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Modified Euler method    2/1,1,0
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3-11- 3
rd

 rank Runge-Kutta method  
This method of Runge-Kutta has a higher accuracy and comparing to other models with the 
same accuracy level is more sustainable. The only disadvantage of this method is the storage 
procedures which are needed for each point in temporal distance (N rank in each temporal 
step). Low storage of Runge-Kutta similar to 1st rank Euler method requires similar storages 
and can be developed in any Runge-Kutta method as well. With the proper choice for 
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If J=1 , then N and a1 will be equal to zero. For the case of RK3, 




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0
 and 


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1

3

n  

have been shown in figure 10.  

 
Figure 10:  presentation of different Runge-Kutta models with different degrees 

Consecutive values of 
i

q  and 



j
 are again written on previous steps. Therefore, in each stage 

only 2N storage place of q  and 


  is required. Parameters of 
i

a  and 
j

b  can be calculated 

with the use of replacing the coefficients of 
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  , 
ij

B  and 
j

W .  

NJBb
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obtained with the use of the below equation:  

                     (19)

  

specifies the method's degree.  

          (20) 

W
j
 we will have the following :  

                   (24) 
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nN
Wb   
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For low storage methods , the required conditions for 3rd rank Runge-Kutta are 
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4- Solution  
For solving Navier-Stokes equations, A semi-implicit fractional step is used. Continuity 
equation and pressure term in momentum equation are expresses in an implicit manner (in 

new time of 
1n

t ) and diffusion and convection terms in momentum equations are expressed 

explicitly.  
4-1- Semi-Implicit Fractional Step Method  
This method is the modified method of stepwise method of Kim and Moin [11]. This method, 
presents a suggestion based on not using pressure term in prediction of each step which is 
similar to methods of pressure modification (an algorithm similar to SIMPLE). Pressure in the 
first step is expresses from the calculation of field explicitly.  
In the second step, the used pressure should satisfy continuity law. For a proper presentation 
of this method, the simplest case of time step of 1st rank Euler in Navier-Stokes equations are 
evaluated which are shown as Indexes.   

n
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n

i

n

i


 11 

Where, 
i

u  is velocity  field; 
i

SU  is the balance of Diffusion and convection terms at every 

control volume surface; and 
i

P  is pressure term which has been shown implicitly. 1st step:  

calculation of average velocity  field of   tPSUuu
n

i

n

i

n

i

n

i


 11
 from equation (26).  

1
st
 and 2

nd
 terms which are at the right side of the equation have been expressed explicitly. In 

this step, pressure term is disregarded. 2
nd

 step: in this step with the use of continuity 
equations, a choice is considered implicitly for pressure field. The continuity equations 
implicitly is expresses in the following way.  

0

1







i

n

i

x

u 

With replacing 
1n

i
u  from equation (26) in equation (27), Poisson equation is obtained from 

pressure term. The produced pressure field of 
1n

i
P  in this step is solved with the use of one of 

the recommended method in the next step. 3rd step: divergence free velocity field of 
1n

i
u  in 

equation (27) and the obtained pressure in 2nd step. divergence free velocity field has been 
calculated and now Scalar fields (temperature and so on) in case of necessity  can be 
calculated.  
4-2- Solving linear equations  
Discretization of pressure term described in 2

nd
 step above causes the occurrence of  so many 

linear equations with the below form.  

(28)    bAx   

Matrix A is a matrix with low number of members and is a 7 Diagonal matrix nd is the 
Periodic condition is used, it will become larger. If the used Boundary conditions are 
appropriate, A will be symmetric  with positive eigenvalues. Two different methods, 
considering the size of A, are used for solving equation (28).  

u u SU P  t                    (26) 

                       (27)
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4-2-1 Direct method: LU divisions  
Evaluating problems with rather small sizes of memory (usually two-dimensional simulations) 
are not considered as a serious problem for the memory and therefore, direct method is 
preferred. In calculation in the present study, LU method has been used. Matrix A with low 
number of members can be converted into two upper triangle matrix of U and lower triangle 
matrix of L. the general solution method of these problems are performed with two steps.  

1
st
 step: bLy   

2
nd

 step : yUx   

Discretization method of LU is different with Gauss elimination method  in which 
factorization can be performed independently from b. in direct method, however, storage of 
all the elements of matrix is necessary. For solving problems with so many number of points, a 
large memory is needed and therefore, Iterative procedure is evaluated.  
4-2-2 Iterative procedure:  Conjugate Gradient Method 
With the use of Iterative procedure, matrix A is converted into two matrix in a way that A=M-
N, in this way equation (28) is converted into the following equation.  

(30)          Mxk+1= Nxk + b 
Error level in each Iterative is equal to:   

(31)           rk= b - 
Axk 

  
The obtained results, after specified iteration has a smaller error level than the allowable limit, 
error level with the use of equation (31) and reducing Mxk from its both sides is equal to the 
following:  

-1
 Ax= C

-1
b). 

Matrix C should be a known and positive symmetric matrix and should be selected in a way 
that matrix C

-1

t
    , K 

The method of conjugate gradient precondition is equivalent with normal conjugate gradient 
method which is expressed in the following way.  

 Mx= Nx + b              (29)
 

Repeating K+1:  

 rk= Mδk, δk= xk+1 - xk     (32)
Iterative procedure is effective when convergence action occurs fast. This indicate the fact that 
Iterative matrix of M is a well-condition matrix. Considering the characteristics of the 
matrices, the use of conjugate gradient method can be one of the best options. On the other 
hand, with the use of some of the Preconditions also the speed of convergence can be 
increased.  
Limitation of conjugate gradient is in that matrix A should be a symmetric matrix and should 
have positive and known eigenvalues. The main idea in this method is to convert equation 
(28) into a minimum problem. Error level (r) has minimized and is expressed as a gradient 
term of the minimum function. With the use of path function search, minimizing process 
directs us toward the right side of the equation.  
Conjugate gradient algorithm is only recommended for calculations related to Scalar values 
and vector values matrix. Convergence criterion in this method is based on error value average 
or maximum iterative value (Kmax). In any case, convergence process is so much slow and this 
is due to the fact that matrix A is not well-conditioned. The number of iterative number can 
be considered equal to the number of grid points but this recommendations is not that much 
acceptable in practice. Convergence percentage of conjugate gradient method is measured 
based on the distribution of eigenvalues of Matrix A. Hence, it appears that producing a 
precondition is necessary for increasing the speed of convergence. This is achieved with the 
use of the precondition of C which is multiplied to both sides of equation (28) (C

A would be a well-conditioned matrix or will have a desirable spectrum of 
known values of matrix A. In case matrix C is a symmetric matrix, the following can be shown:  
   C= KK
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(34)        
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Selecting a good precondition can have a considerable effect on convergence procedure and 
time of CPU. Numerical calculation indicate that in so many cases using Incomplete Chollesky 
factorization matrix (IC) from matrix A can be a good choice for matrix C, with modification 
of this method, factorization method of other forms of preconditions such as MIC0, IC3, IC0 
and MIC3 also have been used.  
5- Results  
5-1 evaluating solutions with previous works  
In this study first for evaluating the accuracy of the obtained solutions, heat transfer flow on a 
square barrier inside a canal has been studies that the obtained Strouhal Number has been 
compared with the results presented by Breuer  et al. [12], Suzuki et al. [13], Guo et al. [14] and 
Amit Agrawal et al. [15]. As it has been shown in figure (11), obtained results in this study have 
an acceptable accuracy comparing to previous works.  

 
Figure 11:  Changes curve of Strouhal number in flow on a square barrier inside a canal 

5-2- Change of local Nusselt  

 
Figure 12:  Changes in local  number with different Reynolds numbers A) 1st barrier, B) 2nd 

barrier for S/H=1 

 
Figure 13: Changes of local Nusselt with different Reynolds numbers A) 1st barrier, B) 2nd 

barrier for S/H=2 
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Figure 14 : Changes of local Nusselt with different Reynolds numbers A) 1st barrier, B) 2nd 

barrier for S/H=3 

 
Figure 15:  Changes of local Nusselt with different Reynolds numbers A) 1st barrier, B) 2nd 

barrier for S/H=4 
5-3- Evaluating changes of average Nusselt in different S/H and in different Reynolds  
Figure (16) in a way has categorized the results and since the relevant descriptions and 
explanations have been presented earlier, here only results have been presented.  

 
Figure 16:  Changes of average Nusselt in different Reynolds and different S/Hs A) 1

st
 barrier 

and B)2
nd

 barrier 
5-4- Studying drag coefficient in different S/H s and in different Reynolds  
Figure (17) presents a classiviaotn of results in a different way.  

 
Figure 17:  Changes in total drag coefficient in different Reynolds and in different S/Hs A) 1

st
 

barrier, B) 2
nd

 barrier 
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5-5- The relation of average Nusselt with Reynolds number n different arrangements:  
After evaluating Nusselt number in different arrangement and considering the curve changes 
in different Reynolds numbers, mathematical relationship for evaluating changes of Nusslet 
number with Reynolds numbers in different arrangements are presented in table (3):  

(35)     
b

aNu Re 

Table 3:  Relationship of average  Nusselt number with Reynolds number 

 1
st
 barrier  2

nd
 barrier  

S/H a b a b 
1 1.07 0.2564 0.187 0.4644 
2 0.8957 0.2964 0.3622 0.3705 
3 0.4361 0.4456 0.0329 0.8813 
3 0.1945 0.6378 0.0068 1.2615 

 
6- General results   
The important thing in Reynolds' increase, as per figure (18) is the change of the shape of flow 
lines. In S/H=1 , with increwsing Reynolds number, Vortices move on the Lateral surface of the 
barriers and the length of vortex behind 2nd barrier increases with the increase of Reynolds 
number and then reduces. In S/H=2, something totally similar to S/H=1 occurs, the only 
difference is that increased distance between the barriers causes the movement of vortices to 
occur on barriers on higher Reynolds and this phenomenon leads to a delay in the reduction 
of vortex length behind the 2nd barriers with increased Reynolds.  
In S/H=3, with an increase in Reynolds number, vortices behind the 1

st
 barrier start to move of 

upper and lower faces of barriers that eventually at Reynolds of 300 the vortex behind the 1
st

 
barrier no more fills the space between the two barriers. Considering the mentioned 
occurrences in this arrangement, the length of the vortex behind the 2

nd
 barrier first increases 

and then reduces. In S/H=4 also, increased Reynolds number leads to the movement of 
vortices between the two barriers on barriers' faces, however, with the start of the movement 
of vortices on barriers' faces and the increase of Reynolds number, in Reynolds of 200, the 
vortex behind the 1st barrier no more fills the space between the two barriers and this causes a 
reduction in the length of the vortex behind the 2

nd
 barrier until it reaches a Reynolds number 

of 200 and then increases the length of the vortex after this Reynolds number.  
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Figure 18:  average time of flow lines in S/H=1 A) Re=100, B, Re=150, C) Re=200, D) Re=250 and E) Re=300 
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6-1- Effect of Reynolds' change on total drag coefficient of the barriers  
Increased Reynolds for the 1st barrier in all the S/Hs leads to an increases drag coefficient, 
however, for the 2nd barrier and in S/H=1 and S/H=2 drag coefficient reduces. In S/H=3 and 
S/H=4, considering the change in the flow shape and the fact that the space between the two 
barriers is not filled by vortices, up to the Reynolds number in which the distance between the 
barriers have been filled with vortices, drag coefficient reduces and after that it increases. This 
critical Reynolds number in S/H=3 is 250 and it is 150 in S/H=4.  
6-2- The effect of Reynolds change in average Nusselt of the barriers  
On both of the barriers located inside the canal, increased Reynolds leads to an increase in 
average Nusselt.  
6-3- Effect of distance change between barriers on total drag coefficient of barriers  
For the 1

st
 barrier, increased distance between barriers in all the Reynolds numbers, don't have 

a significant change on drag coefficient. For the second barrier, until the time that the vortex 
behind the 1st barrier fills the gap between the two barriers, changes in drag coefficient are 
practically negligible, however with the change of flow arrangement, drag coefficient 
increases.  
6-4- Effect of change of distance between the barriers on average Nusselt of the 
barriers  
With an increase in the distance between the barriers for the 1

st
 barrier, average Nusselt 

increases, however, increased Reynolds have a direct effect on increased average Nusselt in 
different distances of barriers. The highest level of average Nusselt jump in defend Reynolds is 
at the barriers distance between 3H and 4H which is due to the effect of Vortex shedding 
phenomenon in heat transfer. On the 2

nd
 barrier also, increased distance between the barriers 

also in general leads to increased average Nusselt, in which Reynolds number has a direct 
relationship with x average Nusslet's increase.  
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